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Abstract During the last half century, significant efforts have been made to explore the
underlying mechanisms of visual selective attention using a variety of approaches—psychol-
ogy, neuroscience, and computational models. Among them, the computational approach
emerged on the stage with the development of computer science and computer vision focus-
ing researchers interests in this area. However, computer scientists often face the difficulty of
how to construct a computational model of selective attention working on their own purpose.
Here, we critically review studies of selective attention from a multidisciplinary perspec-
tive to take lessons from psychological and biological studies of attention. We consider how
constraints from those studies can be imposed on computational models of selective attention.

Keywords Selective attention - Computational model - Multidisciplinary approach

1 Introduction

Due to the manifold nature of visual attention, many approaches—f{rom psychological and
biological studies, to computational modelling—have been used to understand, simulate and
implement its functions. Marr’s influential work distinguished three different levels involved
in understanding complex visual systems—computational theory, algorithm and implemen-
tation (Marr 1982). In his terms, the computational level is the description of what the goal
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of the computation is, the algorithmic level is the operational description of how the compu-
tation is carried out, and the implementational level is the description of how the algorithm is
realized physically in the brain or in a computer. The results of an interdisciplinary approach
can extend our knowledge about visual attention. However, it simultaneously requires addi-
tional work to integrate the different stories from the various levels into a single and coherent
account, as in a game where different pieces of a puzzle must be placed to make the overall
picture.

The puzzle game, “what is visual attention”, is not a random game to pick up a piece
of a picture and put it in an arbitrary place. The rules of our game are constrained by the
findings of studies from the different levels. That is, the constraints not only provide their
own criteria—e.g. biological or psychological plausibility or computational efficiency that
a study must achieve, but also require that we maintain the general consistency of an inter-
disciplinary approach through mutual constraints. This also leads researchers to investi-
gate new and challenging problems that arise from conflict between studies from different
levels.

This paper critically reviews studies of visual attention that have been carried out in three
different areas—psychological, biological and computational studies—and compares them.
In the first section, we introduce theoretical work developed in psychology. The theoretical
work includes important, actively debated, issues such as ‘why attention is necessary’ and
‘how it works’. This section is primarily motivated by Marr’s first level, the goal of visual
computation, but it is also motivated by Marr’s second algorithmic level. In the second section,
we introduce work on the biological foundations of visual attention. This section is closely
linked to Marr’s third level—how visual attention is implemented in the brain, and includes
such issues as ‘where the locus of attention is’, ‘what the underlying neural mechanism of
visual attention might be’ etc. In the third section, we review computational models that owe
a debt to both psychological and biological studies. Even though we divide this paper into
sections according to these areas, our reviews in each section are not strictly limited; rather,
we cross boundaries between the areas to show the interdisciplinary constraints. Finally, a
summary is given at the end of the paper.

2 Visual attention in psychological studies
2.1 Purpose of attention

First, we may ask why visual attention is needed as in Marr’s metatheoretical conceptualiza-
tion of the study of vision (Marr 1982). There may be many different reasons depending on
the task that a person or a machine carries out. Among the many possible purposes of visual
attention, some basic and important assumptions are introduced here.

The central assumption of the necessity of attention is the limited amount of perceptual
resource available for a given task or process. This can vary with a number of factors such as
motivation, difficulty of a task, alertness, etc. That is, the basic purpose of attention is to avoid
possible information overload to protect a mechanism of limited resource. The resource limi-
tation was originally conceptualized by Broadbent (Broadbent 1958). In his theory, known as
filter theory, only a small portion of the incoming information is passed through the selective
filter and identified, but other information is shut out from further analysis. The necessity of
attention to overcome resource limitations becomes clear if we consider the analogy with a
computer that has limited processing speed and limited memory, but a huge amount of input
data, not all of which is relevant for a particular task. If the system can selectively process the
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small portion of information that is relevant to a current task, it can increase the efficiency
of processing and prevent a breakdown caused by an overload.

From a different perspective, Treisman and her colleagues (Treisman and Gelade 1980;
Treisman and Schmidt 1982) propose feature integration theory, in which attention is needed
to solve the ‘binding problem’. The binding problem is generally defined as the problem
of how the visual system correctly links all the different features of complex objects. Cor-
rect combination of features belonging to different objects is essential for visual perception.
Binding is also critically important for machine vision since objects in a scene are typically
cluttered and occluded by others. Correct binding of parts or features of an object directly
affects system performance. Moreover, selective binding from many possible feature com-
binations may avoid a combinational explosion.

Concerning invariant representation in terms of size, translation and rotation, Palmer
(1998) argue that attention plays a role in the mapping of an object in a retinal-based spa-
tial representation into a representation with a canonical reference frame. For example, size
constancy could be achieved as an internal reference frame moves from a smaller to a larger
size relative to the size of a stimulus, so that the stimulus is represented in object-centered
coordinates not viewer-centered coordinates. The object-centered coordinate reference frame
is seen as central to understanding spatial relationships. Neuropsychological evidence may
also support this idea. For example, a patient, JR, who has a damaged bi-lateral parietal
region (thought to have a role in attention), showed impaired responses to both within-object
representation (to encode the spatial relations between parts of single objects) and between-
object representation (to encode the spatial relations between separate perceptual objects)
(Humphreys and Riddoch 1995).

Besides these purposes of visual attention, there are many other possible roles of atten-
tion in learning (Grossberg 2005), resolving ambiguity (Luck and Ford 1998), figure-ground
separation (Qiu and von der Heydt 2007), multi-stable perception (Sterzer et al. 2009), con-
sciousness (Koch and Tsuchiya 2007), and so on.

2.2 Selection process

To answer the question of how the goals described above can be achieved, it is essential to
develop a system at the algorithmic level. The process of how a small portion of information
is selected lies at the center of every theoretical explanation of visual attention. Three major
issues in this selection process that concern the algorithmic level are reviewed here.

2.2.1 Early versus later selection

This is one of the controversial issues in the study of visual attention and concerns the stage at
which the supposed bottleneck of limited capacity is located, i.e. where the selection process
takes place. In the sequence of information processing stages (not time), we can roughly
divide early and late selective attention. From the limited capacity assumption, Broadbent
(Broadbent 1958) originally suggest that selection takes place at a relatively early stage of
information processing, that is, before information reaches the semantic or identification
stage. Various stimuli with different physical properties, such as intensity, color, orientation,
location and so forth, are stored in short-term memory. The attention filter works on these
physical or_sensory. attributes. Only a small portion of the information is selected, passed
through an attentional filter and processed at a further stage. The remainder is blocked. That
18, information is processed in parallel before a selection process occurs, but from then on,
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it is processed serially. This implies that we identify only one object at a time. The selected
information is identified and becomes conscious.

In contrast to the early selection account, late selection theory assumes that selection takes
place at arelatively late stage. The selection process works on semantic categorization, rather
than physical attributes, so the limited capacity channel is located after the stage of semantic
analysis (Norman 1968). That is, visual objects are processed massively and unselectively,
and are passed without any capacity limitation up to the semantic filter. Even though both
theories seem mutually exclusive and difficult to reconcile, a compromise may be reached
between them. In attenuation theory, rejected visual information is attenuated rather than
completely blocked (Treisman 1960). The two phases of selection work in both the early
and late stages. In the first phase, early selection attenuates (or partially blocks) incoming
signals. The second phase of attentional selection works on the process of identification.
In some senses, the attenuation theory implies that as a human interacts with the surround-
ing environment, selective attention continuously and variably moves between two poles,
a reflexive response to physical features and a goal-directed or knowledge-driven behavior,
rather than at one or the other of the two discrete poles.

More recently, Lavie (1995, 2005) has suggested a hybrid model of attention in which
the distinction between early and late selection rely on perceptual load. In a series of experi-
ments, he found that distractors can be excluded from perception when the level of perceptual
load in processing task-relevant stimuli is sufficiently high to exhaust perceptual capacity.
However, in situations of low perceptual load, any spare capacity left over from the less
demanding relevant processing may be allowed to deal with irrelevant distractors. That is,
early selection is predicted for situations of high perceptual load, whereas late selection is
predicted for situations of low perceptual load.

2.2.2 Space versus object based selection

Another issue is whether attention is deployed simply over space, or over an object that
occupies a space. However, this does not seem a contentious issue; rather, it can be seen as
a different aspect of selective attention since attention can work on both ‘where’ tasks and
‘what’ tasks.

One way to explain how attention works is to use an appropriate metaphor. According to
the spotlight metaphor, attention can be characterized as an internal beam that throws light on
the location where an object is placed (Posner et al. 1980). Therefore, the object in the light
is highlighted and processed more effectively, but other objects out of the light are processed
less effectively. The spotlight moves from one location to another, once an object has been
processed. Posner and his colleagues (Posner et al. 1977; Posner 1980) carried out a series
of cueing experiments that showed that the cued place where spotlight attention is allocated
is more efficiently processed than an invalid cued place or the non-cued place. Early account
of these cue validity effects is based on limited resource assumption. That is, processing
resources are allocated to the location where the target is more likely to appear, and this
improves the perceptibility, or quality of processing of the target at the cued location, rela-
tive to the uncued location (Posner 1980). Alternatively, cue validity effects can be simply
explained by the Bayesian statistical model that assumes a weighted combination of noisy
responses across the two locations without any resource limitation assumption (Eckstein et al.
2002; Shimozaki et al. 2003).

Another.metaphor to.explain the attention mechanism is the zoom lens metaphor (Eriksen
and James 1986; Muller et al. 2003). In this account, attention initially covers a large area
with low spatial resolution, and then zooms in on details with high spatial resolution. That is,
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attention moves from forest to trees. The idea of the zoom lens metaphor is related to ‘global
to local’ or ‘object and its parts’ interaction.

In both metaphoric explanations, attention is directed to a spatial location, rather than to an
object in a space. In contrast, an alternative approach to visual attention is based on objects.
The main difference between these two approaches is that space-based attention enhances
everything within the area that spatial attention illuminates regardless of objects or parts of
objects, and consequently all objects in the area are equally processed. In contrast, in the
object-based approach, since attention is allocated to an object in space, other objects that
occupy the same space are not equally processed.

Experimental studies for object-based selection have focused on how attention is directed
to process features within a corresponding object boundary and to organize them into a coher-
ent object. For instance, Duncan (1984) carry out an experiment that supports the object-based
approach. In his experiment, subjects were asked to report two features that belonged either
to the same object or to different objects located in the same area. The stimulus consisted of
two objects: a box with a gap and a line drawn over the box. The dimensions of the stimulus
varied according to box length (short or long), gap location (right or left), line type (dashed
or dotted) and line slant (tilted clockwise or tilted anticlockwise). The results of his exper-
iments showed that subjects detected features that belonged to the same object more easily
than features that belonged to different objects. This is known as the “same object advantage”

To demonstrate attentional benefits for processing visual objects, grouping principles
such as continuation (Moore et al. 1988), collinearity (Lavie and Driver 1996), and similarity
(Baylis and Driver 1992) were often adopted even though perceptual grouping had been con-
sidered as an early, image based and preattentive process (Julesz 1991). The studies reveal
the close relation between attentional and perceptual organization processes, and show that
various organizational processes constrain attentional selectivity. For example, some forms
of grouping take place early, rapidly, and effortlessly depending on shape ‘goodness’ or
‘simplicity’ whereas other forms like figure-ground problems require controlled attentional
processing (Kimchi and Razpurker-Apfeld 2004).

Different evidence for both space-based and object-based selection have led to a controver-
sial debate about whether selection is object-based or space-based. However, this distinction
could be elusive. The space-based and object-based strategies could be different aspects of
visual attention resulting from tasks that require different visual pathways—the ‘where’ path-
way and the ‘what’ pathway (Mishkin et al. 1983). For identification or recognition tasks, it
is critical to understand detailed parts of an object to recognize it, regardless of where it is.
However, to avoid bumping into others whilst walking through a large crowd, precise spa-
tial representation is critical regardless of individual identities. Furthermore, recent studies
showed that both spatial and object factors can simultaneously influence the allocation of
attention (Egly et al. 1994), and can work in a mutually compensatory manner (Muller and
Kleinschmidt 2003).

2.2.3 Object versus feature-based attention

We can voluntarily focus our attention on particular visual features of an object, for example
on a particular color or shape. This ability is called ‘feature-based attention’. Unlike bot-
tom-up based attention, in which distinctive visual features automatically draw our attention,
feature-based attention requires top-down feedback to guide a visual search. Even though both
feature- and object-based attention is directed to features associated with a target, only object-
based attention is confined to the features of a single object. Both attentional mechanisms
support selection of the attended feature, but they differ strongly regarding the processing of
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non-attended features of the target object (Wegener et al. 2008). That is, irrelevant features of
a target object are assumed to be activated in object-based attention, whereas the irrelevant
features are assumed to be suppressed in feature-based attention.

There is experimental evidence that demonstrates how the fates of non-attended features
are determined in both explanations. In an object-based experimental paradigm, conjunctive
stimulus surfaces composed of more than two features, like motion and form, are often used
to explore the fate of non-attended features (Schoenfeld et al. 2003). In such an experiment,
directing attention to a particular feature belonging to one stimulus surface facilitates pro-
cessing of other constituent features of that stimulus surface, even though these constituent
features are task-irrelevant. A processing benefit for irrelevant features of an attended object
has also been shown in more recent studies of binocular rivalry (Mitchell et al. 2004) and
cross-modal attention (Turatto et al. 2005).

On the other hand, in a feature-based experimental paradigm, spatial cues were used to
direct the subjects attention to individual features or an entire object between two gratings
(Wegener et al. 2008). The cue in the experiment was associated with the indication of which
feature (speed or color change) should be attended and which object (right or left object)
should be attended. The results obtained from measured reaction times showed that incorrect
cueing of the changing feature slowed down reaction times significantly, compared to object
cueing. This indicates that selection of a specific feature may go along with suppressive
mechanisms for unattended features. Moreover, recent studies also have challenged the same
object advantage. The advantage can be considered in terms of a product of probabilistic and
configural strategic prioritizations rather than of perceptual enhancement (Shomstein and
Yantis 2004).

2.2.4 Bottom-up versus top-down based attention

Another distinction in visual attention is made by the direction of information processing.
For bottom-up based attention, two major categories of stimulus properties that could, in
principle, capture attention can be distinguished: ‘singletons’ refer to feature attributes such
as color, orientation or motion that substantially differ from their backgrounds, and ‘abrupt-
onset’” stimuli refer to visual targets or distractors that suddenly appear in a visual scene
(Egeth and Yantis 1997). ‘Singleton’ attributes of a stimulus can easily attract our attention.
For example, a red colored circle (a target) surrounded by blue colored triangles (distractors)
is easily detected. Adding more distractors to a stimulus scene does not affect the time it
takes to find a target.

The basic assumption for bottom-up based attention is that preattentive processing is
driven by the bottom-up properties of the stimulus, prior to attentional allocation. This pro-
cess occurs in multiple feature dimensions and a parallel manner. After the initial preattentive
analysis of a scene, one object is selected on the basis of local feature contrast obtained from
its relationship with respect to surroundings. Salience refers to the physical, bottom-up dis-
tinctiveness of an object. Attentional allocation is accompanied with ordering the most salient
object to the least salient object.

In contrast, when properties of a target are not salient against its background, such as
when we want to find a key on a messy desk, the task of finding the target requires the use of
our knowledge of ‘what the key looks like’. Characteristically, in this case, searching is less
efficient than in the case of finding a salient item. The response time to find a target increases
when more distractors are added. This leads us to believe that top-down based attention uses
serial processing .
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Interestingly, the saliency that automatically attracts our attention may not necessarily
be based on low-level features. For example, a toy car in a refrigerator is an unexpected
and salient item among foodstuffs. Vanrullen et al. (2003) argued against the classical view
that visual ‘bottom-up’ saliency automatically recruits the attentional system prior to object
recognition, and proposed that saliency can be defined at multiple levels, such as luminance
contrast, feature contrast, semantic discrepancy, and behavior discrepancy. Similarly, Fecteau
and Munoz (2006) also point out that the terms salience and relevance are often treated as
synonyms in neurophysiological literature since bottom-up and top-down sources of input
converge to produce an amalgamated representation of priority.

3 Biological foundations for visual attention

So far, we have reviewed theoretical aspects of visual attention at the behavioral level. Now,
we turn to biological foundations of visual attention that give some hint of how visual atten-
tion is implemented in the brain. We start from the two main visual pathways, briefly referred
to above, to approach visual attention. This gives a general anatomical structure of the brain
mechanisms involved in visual information processing. However, our review more specifi-
cally focuses on the attentional mechanism of the brain along these pathways.

3.1 Visual pathways

Anatomically, vision can be roughly divided into two main streams that correspond to ‘what’
and ‘where’ tasks, as shown in Fig. 1. The ‘what’ (or ventral) pathway runs from the occipi-
tal cortex to the temporal cortex, and it is thought to be specialized for object vision, while
the ‘where’ (or dorsal) pathway runs from the occipital cortex to the parietal cortex, and
is thought to be specialized for spatial vision. The original work of Mishkin et al. (1983)
showed that a specific lesion in the temporal lobe produced severe impairment in an object
recognition task, while a specific lesion to the parietal lobe produced severe impairment on a
spatial selection task. More elaborate work on visual pathways has been done more recently
by other researchers (DeYoe and Van Essen 1988; DeYoe et al. 1994; Kanwisher 2003).
This shows that visual information is decomposed into different visual pathways that are
specialized for perception of color, form, depth, motion, etc. at lower brain areas and fed into
higher areas. These areas are connected in feed-forward and feed-backward manners, and
also laterally interconnected. Attention studies on the brain focus to identify the loci of the
brain and the underlying physiological mechanisms related to attentional tasks with various
methods such as a single/multi cell recoding, brain imaging, etc (Fig. 2).

3.2 Mechanisms of visual attention
The diversity of visual attention suggests that attention is accomplished by many brain areas,
rather than a single brain area. There are many different roles of brain areas in visual atten-

tion; we cannot describe all these different brain mechanisms here. Rather, we focus on the
mechanisms in relation to the psychological issues introduced in the previous section.

3.2.1 Properties of receptive fields

Here, we introduce the concept of receptive fields (RFs) because many physiological studies
of visual attention utilize them by estimating cells’ responses to corresponding RFs in a given
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Fig. 1 The visual pathways in the macaque monkey. A schematic illustration of visual pathways for object
recognition and spatial representation is shown
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Fig. 2 Illustration of three computational models. From left, Itti et al. (1998), Sun and Fisher (2003), and Lee
et al. (2005)’s model are presented with simplified characteristics. The major characteristics of the models are
boxed dashed lines

attentional task. Classically, an RF is defined as the ‘receptor area in which stimulation leads
to response of a particular sensory neuron’ (Levine and Shefner 1991). The RF has interesting
properties in the visual hierarchy and is dynamically modulated by various factors, such as
lateral interaction, as well as by attention. First, along a visual pathway from V1 to IT, the
selectivity of neurons changes. Cells in early stages are sensitive to very low-level features,
such as local contrast or edges. As one moves to a later stage, cells are sensitive to more
complex patterns, such as shape. Second, the RF size of cells increases at later stages. This
means that the response of a cell in a later stage becomes more independent of the location
hieving translation invariant recognition. Third,
stimulus falls into an RF, in comparison to the
within the RF.
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3.2.2 Biased competition

Desimone and Duncan (1995) proposed a biased competition hypothesis that is logically
derived from the limited resource assumption. According to them, the RF can be viewed as a
critical visual processing resource, for which objects in the visual field must compete because
the resource is limited. The experimental paradigm so-called ‘sensory suppression’ is often
adopted to show supportive evidences of the hypothesis (Kastner and Ungerleider 2000; Beck
and Kastner 2008). In this paradigm, the responses of a cell to a single effective stimulus
presented within its RF are compared to the responses to the same stimulus paired with an
ineffective stimulus within the RF. With only the effective stimulus, cells in V4, MT and IT
of monkeys produced a high firing rate, whereas the paired stimulus elicited relatively lower
firing rates of the cells. This result implies that multiple objects in a restricted RF compete
for limited processing resources in a mutually suppressive way. The degraded response of
the cell can be enhanced by selectively attending an object and ignoring the others.

Desimone and his colleagues investigated attentional effects at a neuronal level along
visual pathways (Moran and Desimone 1985; Luck et al. 1997; Reynolds and Desimone
2003) . In a typical neurophysiological experiment (Moran and Desimone 1985), neural
activities from a monkey were recorded during an attention task that required it to attend to
one object and to ignore the other. The objects were presented inside or outside the RF of the
cell. When two stimuli were presented inside the RF, the neuron’s response to the attended
stimulus appeared to be of normal magnitude, while its response to the ignored stimulus was
suppressed. However, they reported that no attentional modulation effect was obtained when
only one stimulus was presented inside the RF.

Similar results were also obtained using a functional magnetic resonance imaging (fMRI)
technique (Kastner et al. 1998). Comparing two conditions in which stimuli were presented
simultaneously or sequentially, brain activation in the sequential condition is higher than that
in the simultaneous condition. The activation in V4 and TEO in the simultaneous condition
is profoundly reduced, but not in V1. In addition, the attentional effects that increase brain
activation in the simultaneous condition are larger than those in the sequential condition. It is
worth noting that attentional modulation effects on V1 are not consistently identified. There
are conflicting reports as to whether attention can affect processing here (Luck et al. 1997).

Even though competition among neurons is an important brain mechanism that helps
achieve stability of the brain, with converging neural responses activated by multiple stimuli
producing a dominant and coherent perceptual experience, and with attentional selectivity
enhancing relevant information and suppressing irrelevant information, the emphasis on com-
petition may neglect another important aspect of selective visual attention, cooperation. As
noted earlier, attention involves many brain areas. The dynamic and cooperative interaction
between those areas may help to reduce the processing burden caused by limited resources
(Deco and Rolls 2005).

3.2.3 Early versus late selection in neural mechanism

The attentional effect on an early stage of visual processing seems controversial, as noted
above. Some experimental results from Event-Related Potentials (ERPs) did not reveal
any difference in the responses of the primary cortex to attended and unattended items,
whereas other brain imaging studies did find attentional modulation effects in that brain area.
Kanwisher and Wojciulik (2000) interpreted these conflicting results based on perceptual
load hypothesis (Lavie 1995). That is, the stage of selection depends on the processing load
of a task. Early selection may occur when the processing load is high, whereas late selection
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may occur when the processing load is low. Even though both behavioral and neuroimaging
studies support the hypothesis (Beck and Lavie 2005), it seems not to be compatible with
the arguments derived from the biased competition account. According to the biased com-
petition account, cells in higher processing stages have larger RFs and have a greater chance
that more objects will fall inside their RFs, so that higher processing loads would be required
for the cells in higher stages. Recently, an attempt was made to link biased competition to
the perceptual load hypothesis (Torralbo and Beck 2008). That is, suppressive interactions
among stimuli in the visual cortex are reduced when the target and non-targets are easily
distinguishable. In contrast, a strong top-down bias from higher brain areas will be needed
to bias the competition in favor of the target when those are difficult to be distinguished.

Another aspect of the issue ‘early versus late’ selection is concerned with that level of infor-
mation—physical features or more meaningful objects. Evidence for feature-based selection
was provided by a brain image study in which subjects were asked to attend to different fea-
tures of the same visual array—color, shape or speed of motion of the elements in the array
(Corbetta et al. 1990). Different regions in the extrastriate cortex were activated during the
tasks according to which features were being attended. Conversely, neurological evidence
also supports object-based selection. For example, in a brain imaging study, subjects were
asked to attend to one of two stimuli (face or house) that were transparently superimposed
(O’Craven et al. 1999). Attending to the face highly activated the fusiform face area that is
believed to be specialized for face representation.

To summarize these findings, attention seems to be involved in multiple stages of visual
information processing in a continuous manner rather than in a discrete or unipolar manner.

3.2.4 Space versus object based attention in neural mechanism

The brain areas linked to both space and object-based attention are identified along the two
major visual pathways. Some areas, including parts of the parietal lobe and prefrontal cor-
tex, are activated by both space and object-based attention (Wojciulik and Kanwisher 1999;
Roelfserna et al. 1998). Some areas are differentially activated by either space or object-
based attention (Colby and Goldberg 1999). Moreover, a hemispheric difference between
these attention mechanisms has been reported (Fink et al. 1997). Concerning space represen-
tation, different parts of the parietal lobe are involved in different spatial relations. That is,
we can possibly construct multiple spatial maps to establish a relationship between a viewer
and objects, among objects, and within an object. For example, in order to grasp an object,
the relationship between my hand and the object should be represented and it should send
continuous feedback signals from my hand’s trajectory. In contrast, for identification of an
object, parts of the object may need to be represented in terms of the object itself, not a viewer,
since a viewer can be in many different positions, and at many different angles, distances,
etc. The reference frames for spatial representation include retinocentric, body-centric, and
object-centric.

Colby and Goldberg (1999) summarized specific areas of the parietal lobe and their cog-
nitive functions in space representation. The ventral intraparietal area may contribute to
representing space in retinocentric and head-centric terms, and specify goals for movements
of the head, lips, and tongue, and facilitate reaching with the mouth. The medial intraparietal
area is specialized to respond to stimuli within reaching distance and is thought to guide
reaching movement. The anterior intraparietal area is linked to the control of hand shape
and grip. Importantly, the lateral intraparietal area responds to sudden abrupt-onset stimulus
and maintains its activity before a saccadic eye movement. It is considered that this area is
responsible for the representation of  attended or salient spatial location. In addition, the area
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transforms retinocentric coordinates into motor coordinates for saccadic eye movement by
tracing memory of stimuli.

Neuropsychological studies on the parietal lobe reveal its link with attentive functions.
Patients with damage to the parietal lobe showed a variety of symptoms, such as somatosen-
sory agnosia (a disorder of tactile appreciation of one’s body), Balint syndrome (a disorder
of recognition for more than one object at the same time), neglect (a disorder of perception
of, or action on, the side of a space or object opposite that of a lesioned parietal lobe), and
so on (Ellis and Young 1996). These studies suggest that the parietal lobe is involved in both
spatial attention and non-spatial attention for object recognition.

In general, object-based and space-based attention share common neural mechanisms in
the parietal lobes, but differentially activate brain areas depending on the related tasks. Early
segmentation or grouping tasks may take place in the primary visual cortex (Lamme 1995),
whereas more complex object representation tasks may take place in higher cortical areas
such as lateral occipital (LO) cortex (de-Wit et al. 2008) or temporal cortex (Serences et al.
2004).

Research efforts to extend the behavioral study of the ‘same object advantage’ to brain
study were also made. However, those efforts do not provide conclusive evidence that sup-
ports the psychological hypothesis. For instance, an fMRI/ERP study investigates the dynam-
ics of object-based attentional selection using objects defined by color and motion features
(Schoenfeld et al. 2003). The study showed that processing of an irrelevant color feature
in the ventral occipital cortex was enhanced when it belonged to the attended surface of a
moving dot array. In contrast, another study showed that ERPs were elicited by a distractor
that shares the same color feature of a target when the task-irrelevant colored distractor was
presented with a target object in a search task (Boehler et al. 2010). That is, object-based
selection of task-irrelevant features may spread globally in space, not limited to within the
target object.

3.2.5 Bottom-up and top-down based attention in neural mechanisms

Unlike the segregated visual pathways for object and spatial vision, less clearly distinguished
systems have been identified for bottom-up and top-down based attention. Many areas in the
brain are commonly involved in both stimulus driven and goal driven attention. Nevertheless,
some evidence suggests that partially segregated networks of the brain carry out these two
different attentional functions (Hopfinger et al. 2000; Buschman and Miller 2007). Corbetta
and Shulman (2002) argue that a network, including parts of the intraparietal cortex and supe-
rior frontal cortex, is involved in preparing and applying goal-directed selection for stimuli
and response, whereas a network including the temporoparietal cortex and inferior frontal
cortex, which is lateralized to the right hemisphere, is involved in stimulus driven attentional
tasks. The frontoparietal areas, such as the lateral intraparietal and frontal eye field, not only
respond to a distinctive stimulus, but also show task-driven responses. Moreover, these areas
are activated during search and detection tasks. Corbetta and Shulman (2002) assert that
these areas may be involved in constructing a saliency map, combining both bottom-up and
top-down information.

Concerning the saliency map that originally introduced in a computational model of selec-
tive attention, an important question raised in biological studies is about where the saliency
map is located in the brain. There seems to be no particular brain area that may be consid-
ered.as.a saliency. map.. V.1, for instance, has been often considered as a major candidate
for salience map location because of the topological arrangement and tuning patterns of V1
cells, but not necessarily in a separate and explicit form (Nothdurft 2006; Zhaoping 2008).
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More higher areas along the two visual pathways—parietal and V4 areas—are also consid-
ered as salience maps. The posterior superior parietal cortex in the dorsal pathway is thought
to be a space-based saliency map because of its winner-take-all like activation patterns toward
stimulus set size (e.g. higher lateral inhibition if set sizes increase) (Roggeman et al. 2010;
Gottlieb et al. 1998). V4 in the ventral pathway is also thought of as a saliency map because
of its retinotopic representation that guides exploratory eye movements. There are many
possible candidates for saliency maps that emphasize different aspects of selective attention.
This may imply that the saliency map is not necessarily a neural substance, rather it could
be emergent properties of neural systems from various processing stages.

One way to investigate bottom-up versus top-down based attention is to measure neural
activities over time in response to a cue, during an attention task. That is, in order to provide
precued information to a current attentional task, neural activities in the brain area in response
to the cue signal need to be sustained during the task. These sustained responses to a cue
can be considered as a top-down control, and can be distinguished from transient responses
that may be thought of as purely sensory driven responses. Some brain imaging studies show
these distinctive responses to a given cue. For example, parts of the parietal lobe (intraparietal
cortex) and frontal cortex are activated during both spatial and object based attentional tasks.
Unlike the areas in the occipital lobe that transiently respond to a cue, these areas show a
sustained response during attention (Bar 2003). Possibly, there are several different ways
to provide top-down influence to an attended stimulus: enhancement of a relevant stimulus,
suppression of an irrelevant stimulus, priming an expected location or object, etc.

3.2.6 Neuronal activities in attentional selection

The debate between object and feature-based attention has focused on the neuronal processing
for task-irrelevant features underlying the selection mechanisms as predicted by ‘integrated
competition theory’ (Duncan et al. 1997). According to the theory, directing attention to
an object feature allows non-relevant features of the object to be coselected and results in
binding them to the object. In contrast, explanations of feature-based attention assert that
processing of irrelevant features are suppressed.

At the neuronal level, this issue concerns whether the neural responses of the non-rele-
vant object feature are activated or suppressed. Some empirical evidence supports object-
based selection, but other evidence does not. For instance, a fMRI experiment measured
neural activities of cortical areas involved in both color processing and word reading dur-
ing Stroop tasks (Wuhr and Frings 2008; Polk et al. 2008). The results of this experiment
show that activation in functionally defined color areas increases while activation in func-
tionally defined word areas decreases. That is, the processing of ignored object features is
suppressed. Furthermore, an ERP study showed that object-based selection of irrelevant fea-
tures is not confined to the attended object, rather it is spatially global over the visual field
(Boehler et al. 2010).

Also, the neuronal responses of feature-based attention are often compared to those of
space-based attention. Two aspects, gain and tuning, of neuronal responses reveal modula-
tion effect led by different attentional mechanisms in visual pathways. The gain effect means
that overall population responses to a stimulus are increased or decreased by a multiplicative
factor across all feature detectors, and thus the amplified response is effective when external
noise is low. On the other hand, the tuning effect means that the population responses profile
to.a stimulus are sharpened. or broadened, and thus the narrowed responses would benefit
when the external noise is high and should be suppressed (Maunsell and Treue 2006; Ling
etal. 2009). The results from the modulation effects led by space-based attention indicate that
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spatial attention boosts the gain of population response and strengthens the representation
of attended locations without changing neuronal tuning curves. In contrast, feature-based
attention exerts a multiplicative gain upon neuronal response and sharpens the tuning curve
of population response. This implies that attentional benefits from both mechanisms can be
differentiated when external noise is high.

4 Computational approaches to selective attention

In this section, computational models of selective attention are introduced in terms of infor-
mation processing and computational purpose. These two aspects give insight as to how an
algorithm is chosen to transform inputs to outputs, and what computational goals of selective
attention are achieved with the algorithm. Even though computational modeling is closely
related to the psychological and neuroscientific studies discussed above, we will not refer to
them in detail to avoid repetition, but take up general lessons in the summary.

Roughly speaking, any computational model for visual attention has two distinctive pro-
cessing stages. This distinction is due to the assumption of capacity limitation that divides
information processing stages into the preattentive and attentive stages. At the preattentive
stage, the visual system works in a parallel manner without capacity limitation, whereas at
the attentive stage, the visual system deals with only one item at a time. Except for a few com-
putational models explaining the attentive process in terms of psychological phenomenon,
after selection occurs, most current models do not refer to it. Therefore, our review focuses
on rather specific algorithmic stages of computational models, such as feature extraction,
selection process, and their applications.

4.1 The feature extraction process

Prior to a selection process, there is a processing stage in which visual stimuli are trans-
formed into a preattentive representation. The goal of preattentive representation is to mark
conspicuous image locations and make them more salient for perceptual pop-out. At this
stage, various physical features, such as orientation, color, intensity, and size, are extracted
in parallel and are composed of feature maps as in Itti’s saliency based model (Itti et al.
1998; Itti and Koch 2000, 2001). Different processing schemes are taken up for their own
computational application to utilize those features to achieve computational goals.

Basically, a center-surround scheme is commonly used to obtain salient features in saliency
based models. The difference in comparison to the surrounding visual input at a location is
calculated by this scheme (Itti et al. 1998). In fact, a region of homogenous features nullifies
the response of a center-surround filter, whereas any discontinuous region of features can
be localized by the response of the filter. However, the linear property of this center-sur-
round scheme is criticized, since psychophysical evidence shows nonlinear and asymmetric
response (e.g. a Q surrounded by Os versus an O surrounded by Qs).

Alternatively, the center-surround saliency is considered as a classification problem in the
sense of how distinct a stimulus at a location is from the stimuli in its surroundings (Gao et al.
2008). Thus, the saliency can be formulated by the mutual information between features and
its two classes (center and surround) that provides an optimal solution in a decision theoretic
sense. Another criticism is based on the semantic analysis of the saliency. That is, a salient
location obtained from the center-surround scheme does not correspond to an object or a
part of an object. Rather, it simply corresponds to a pixel of an image scene that has higher
contrast (Vanrullen et al. 2003).
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In response to the criticism above, the salient points of images derived from the center-sur-
round scheme were recently investigated using the ‘LabelMe’ database in which objects of
an image were manually annotated (Elazary and Itti 2008). Assuming that the labeled regions
are interesting, a few of the most salient locations of the images are compared to the marked
regions of the images. It was found that one or more of the top three salient locations, in 76%
of all images, fell on a labeled region. On this basis, it is argued that selecting interesting
objects in a scene is largely constrained by low level visual properties.

Second, a multi-scale mechanism is used to obtain an image representation from a coarse
spatial scale to a finer spatial scale, with the zoom lens metaphor accomplished with the
mechanism (Olshausen et al. 1993; Deco and Schurmann 2000; Sun and Fisher 2003; Sun
et al. 2008). The information carried by multiple spatial scales is different. The general struc-
ture of the visual object is conveyed with a large-scale spatial resolution, while details of the
object can be conveyed with a small-scale spatial resolution. In Deco’s model, for instance,
the coarsest level of spatial resolution is utilized to find the location of an interesting object
in a priority map (Deco and Schurmann 2000). Once an object is located, the object is iden-
tified by increasing spatial resolution to a finer level until it is confirmed to be a target. For
object recognition, detailed spatial representation is not necessary to locate an object, but it
is necessary to identify what the object is. Similarly, global scene information can be used
to guide attentional allocation at the local salient parts of the scene obtained from bottom-up
saliency (Torralba et al. 2006; Oliva and Torralba 2007).

Interestingly, Sun and Fisher (2003); Sun et al. (2008) attempt to combine both the cen-
ter-surround and multiscale decomposition schemes in a similar way to that of the zoom
lens models. In the model, the attentional scan passes from a global saliency map to its local
saliency maps based on global-to-local interaction. That is, if we admit the homogeneity of
‘within-object’ and discontinuity of ‘between-object’ at a feature level including intensity,
color, texture, etc., the center-surround contrast with multiresolution provides not only a
salient location in a visual scene, but also the boundary between visual objects or their parts.

4.2 Selection process

This part reviews the selection process implemented in various computational models. Some
selection algorithms are more explicitly implemented in a psychological and biological con-
text, while others are not. We first raise an issue of competitive and cooperative aspects of
selection, then some issues of selection process introduced in previous sections.

4.2.1 Selection—cooperative or competitive?

The biased competition hypothesis, referred to above, implies that neurons at a given pro-
cessing stage take part in an inevitable war for limited resources. In computational models,
the concept of competition is embedded in the WTA network in which units are mutually
interconnected and are inhibited by each other (Itti and Koch 2000; Indiveri 2008). Only
the one unit surviving in the competition is selected, and consequently, the limited resource
problem can be solved as the winner takes all the resource. Ironically, Lee (2008) argues that
the logic of inevitable competition can be applied to the necessity of cooperation. That is,
the limited resource assumption may also require the cooperation of independent brain areas
or neural channels that help reduce the burden of processing in various ways. In his model,
selection is.accomplished by the integration of bottom-up information with cooperative cues.
For instance, the task of ‘finding a man in red t-shirt’ deals with two types of information
driven from bottom-up features, such as skin color and facial shape, and a cooperative cue
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feature, such as red color. Face candidates near the cue feature are more likely to be selected,
and thus the whole image is not exhaustively searched in a face-by-face manner.

4.2.2 Which stage of selection—early or late?

Models of selective attention concerned with the locus of selective attention, can be classified
into early or late selection models. In particular, the issue debated in psychology is related
to whether the selection process occurs before object recognition or after. Even though some
computational models insist that a late selection mechanism is utilized in the models, ‘late’
does not mean ‘after object recognition’ and the selection process does not work on seman-
tically meaningful information. In this sense, most current computational models are based
on early selection.

First, in the bottom-up saliency based model the selection is accomplished by saliency
calculated from the center-surround feature contrasts. The selected location does not mean-
ingfully correspond to the location of an object as noted above. Rather, it simply corresponds
to the location where it gives the strongest contrast, e.g., possible edges. It seems that not
many things can be done with the selected point for further processing even though Itti (Itti
and Koch 2001) argues that it can be the front end to object recognition. Some variations
adopting Itti’s model use additional region segmentation methods for further processing after
a saliency map was constructed (Mendi and Milanova 2010). Even though the selection algo-
rithm of the model is intuitive and easily applied to the feature level of a visual image, little
benefits for later processing stages can be obtained from this selection mechanism. So, one
may ask if it is too early to select meaningful features.

Little bit late, but still early, Sun and Fisher’s computational model groups the feature ele-
ments such as color, intensity and orientation into more meaningful perceptual units (objects)
before the selection process operates (Sun and Fisher 2003). The selection process in Lee’s
model (Lee et al. 2005) occurs at a more abstract representational level that combines facial
features, such as facial color, shape, and symmetry, using a dynamic neural network. Possi-
ble benefits from the computational model based on this ‘bit late’ selection are: (1) selection
can be accomplished in a meaningful way by allocating an attentional window at the object
location, not at a salient point; (2) bottom-up information can be easily coordinated with
top-down information, since a smaller number of objects (not points) are activated at a time
compared to those models using early selection.

Recently, more meaningful features such as similarity, familiarity, and symmetry have
been introduced. For instance, Lee et al. (2010) use the feature ‘familiarity’ that is a measure
of the resemblance of local features extracted from the input image to features of trained
object models stored in a database. This measure provides the degree of evidence whether a
task-relevant target object exists or not. They argue that an advantage of using familiarity is
that it does not require additional information other than the object database available in an
object recognition system.

In general, possible benefits of early and late selection can be considered in terms of
computational efficiency and robustness. If selective attention takes place at an early stage
of information processing, the computational load for later stages will become lighter. How-
ever, it is difficult to decide which features are important since objects are likely to share
the same physical features. Conversely, selection would be relatively easy if attention takes
place at a late stage, because selection works on a small number of units that correspond to
more abstract factors such as concept or category. However, it also implies that more com-
putational resource is required to process all objects in a visual scene up to the late stage.
The tradeoff between ease of selection and the amount of required computational resource
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is clearly problematic if one wants to develop a computational model that has efficiency and
robustness.

4.2.3 Employing object knowledge or not

The distinction between bottom-up and top-down is based on whether or not knowledge of
a target object is employed for a selection process. For a bottom-up based model, selection
is determined by physical properties of image features including intensity, orientation, color,
and motion. A key issue for bottom-up based selection concerns how regions of interests are
selected on the basis of the physical properties.

The center-surround difference scheme has been dominantly employed for the selection
criteria of the early bottom-up based models. Recently, various methods are being developed
to obtain the saliency. For instance, entropy based saliency estimates the local unpredict-
ability of an image region that may correspond to an informative (or distinctive) part of the
image (Itti and Baldi 2006). The spatio-temporal saliency can be calculated from density esti-
mation of pixels both in spatial and temporal domain (Mahadevan and Vasconcelos 2010).
This spatio-temporal saliency is closely related to Shannon’s information which the quantity
of an event is inversely proportional to the probability of the observation of the event. The
spectral residual, which can be obtained from the difference between log-spectrum and aver-
aged spectrum of an image, is used to detect saliency (Hou and Zhang 2007) Since all these
methods rely on the intrinsic nature of the stimulus itself, no top-down knowledge about a
target is necessary and thus they are independent from the tasks requiring knowledge.

In contrast, top-down based selection is based on the knowledge that involves a task.
Therefore, a key issue for top-down based selection concerns how selection criteria are set
from knowledge related to a task. It should be noted that top-down knowledge implies both
knowledge as directly related to a target object (such as color of the target object), and the
contextual knowledge explicitly or implicitly given.

The ‘Guided Search’ model developed by Wolfe (1994) is a milestone that has influenced
many computational models of visual attention. In the model, different primitive features
such as color and orientation are extracted in parallel and construct a set of feature maps.
Next, the feature maps are passed through a differencing mechanism that yields the bottom-
up activation. This activation can be used to guide attention toward distinctive items in the
visual field. However, with only the bottom-up activation, a desired item can not be located if
the item is not salient. Top-down information is need to enhance relevant feature properties
and to suppress irrelevant feature properties. This is accomplished by top-down feedback
directed to each feature map.

More recently, Hamker (2006) proposed a computational model that shares many aspects
with the ‘Guide Search’ model, but it is different in details. The model, that is biologically
inspired, also considers the influence of top-down information about a target template in
the prefrontal cortex (PFC). The target template encodes features of the target object by a
population of sustained activated neuronal units. Feedback from higher levels such as PFC
and TE in the ventral pathway transfers the target template to lower levels such as V4. As
a result, units corresponding to the features of interest different levels of the hierarchy are
enhanced by the feedback.

Recent extensions of Itti’s basic model uses task knowledge or feedback for object selec-
tion (Navalpakkam and Itti 2005, 2006). In these models, top-down knowledge about a
target object is. directed to.an early stage of processing. The top-down knowledge is utilized
by imposing weighting parameters on the stage before or after constructing feature maps.
That is, the top-down influence works on the early stage by enhancing wanted features or
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suppressing unwanted features, so that certain features relevant to a target object can easily
pop-out.

Torralba et al. utilize contextual knowledge to select target location (Torralba et al. 2006;
Oliva and Torralba 2007). In their approach, the probability of the presence of a target at a
location is described in terms of the conditional probability of the target object at the location
over jointly given target features and contextual features. For simplicity, the conditional prob-
ability can be decomposed into three terms—object likelihood, local saliency and contextual
priors. Contextual priors provide a strong bias about the location of a target.

4.2.4 Selection in space

Even though the issue of whether attention is directed to a location, feature, or object has been
extensively studied in both psychology and neuroscience, there are only few computational
models that implement these selective properties.

In behavioral studies, space-based attention has been studied with Posner’s cueing para-
digm (Posner 1980). Basic findings of the paradigm are straight forward. Attention benefits
performance in detecting a target at a cued location, whereas attention costs performance
in detecting a target at an uncued location. This validity effect is the core of computational
modeling of spatial attention. In Mozer and Sitton’s model, a winner-take-all network was
used since only one attentional unit should be active at a time (Mozer and Sitton 1998). The
attentional units received both exogenous inputs coming from sensory data and endogenous
inputs coming from previous learning or cueing. Thus, exogenous and endogenous inputs
take a role to activate an attentional unit, but inputs from the other competitive units take a
role to suppress it. In this scheme, the validity effect results from competition among units,
rather than interaction between the exogenous and endogenous inputs.

Another explanation of the validity effect is based on Bayesian statistic (Eckstein et al.
2002; Chikkerur et al. 2010). In this explanation, the likelihood of the responses given a signal
at the cued location, the likelihood of the responses given a signal at the uncued location,
and the likelihood of the responses given a noise at the both cued and uncued locations are
separately calculated, weighted by prior probabilities, and then the likelihood ratio between
signal and noise can be obtained. A decision can be made by comparing the likelihood ratio
with the decision criteria. Basically, the validity effect is caused by both the weights obtained
from prior probabilities and the signal-to-noise ratio. Therefore, the validity effect can be
explained in terms of an optimal decision boundary that maximizes benefit and minimizes
cost.

4.2.5 Selecting proto-object

The concept ‘object based attention’ in some literatures of computer vision is confusingly
different from that in behavioral and biological studies. For instance, Borji et al. (2010) use
the phrase to select a node of a U-TREE algorithm in which objects are represented in those
nodes. Thus, object-based selection simply means to select a node corresponding an object,
rather than to select parts or features belonging to the same object.

More carefully, ‘region based selection’ in computer vision seems closely linked to object-
based attention (Hu et al. 2008; Avraham and Lindenbaum 2010). In this approach, segmenta-
tion process, that partitions.a digital image intomultiple segments that may be more meaning-
ful or corresponding to an object, is accomplished to find regions of interest. These segmented
regions are also known|as ’proto-objects or 'pre-attentive objects (Orabona et al. 2007).
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Interestingly, a polar transformation of features is often adopted in this approach. The advan-
tages of polar transformation are that feature homogeneity and spatial proximity are taken
into account when analyzing regions.

In Sun’s model, the hierarchical relationship between segmented parts is established to
guide the attentional movements shifting from one locus of attention to another that may
belong to the same object. In the model, the Gestalt cues such as spatial proximity and
similarity are considered to bias the allocation of attention. Furthermore, Sun argued that
object-based attention has interesting properties that space-based models do not have: (1)
more efficient visual search; (2) less chance to select a nonsensical or empty location; and
(3) naturally hierarchical selectivity.

However, although their model showed more interesting and dynamic properties not yet
exhibited by current computational models, the segmented regions still remains loosely sep-
arated, rather than concretely combined. Moreover, if we apply more strict criteria shown in
psychological studies, in which objects overlap at the same location and attention is switched
from one object to another, it is still questionable if the model can carry out the task.

Interestingly, Kim and Lee (2004) attempted to recognize superimposed patterns with
top-down selective attention. In the model, an attentional layer (filter) is located between
the input and the multi-layer classifier (MLP), and its unit has one-to-one connection with
input units of MLP. Attentional gain is adjusted by the gradient descent rule that suppresses
the irrelevant and noisy features in the input or enhances the relevant features in the input
using the knowledge of trained patterns. With the attentional switch algorithm that changes
attentional gains to O if they are greater or equal to 1, and to 1 otherwise, the recognition of
the superimposed pattern is changed from one class to another by attentional switching.

4.3 What and where tasks

Researchers want to tackle two main types of tasks—search or detection (‘where”) tasks and
object recognition (‘what’) tasks. Even though the labels of ‘spatial-based’ and ‘object-based’
models are closely associated with what they can perform, it does not necessarily mean that
a spatial-based model can only work for a ‘where’ task and an object-based model can only
work for a ‘what’ task. Rather, as pointed out by Miau et al. (2001), spatial-based attention
may serve as the front-end to object recognition by eliminating many irrelevant locations.
Conversely, object-based attention may serve as the front-end to a search by eliminating
many irrelevant objects.

4.3.1 Object recognition

An important aspect of the saliency based approaches that is also shared by many other mod-
els is that the saliency map is retino-topographically organized. This is a useful coordinate
system as long as the task for a model is limited to a searching or detection task. However,
as pointed out, when attention engages a specific object, retinocentric spatial representa-
tion needs to be transformed to an object-centered spatial representation for invariant object
recognition. Sun and Fisher (2003) also criticize the saliency-based attention models since
they fail to perform in cluttered scenes or where objects overlap or share some common
properties. For object recognition, selecting a location does not guarantee that the location is
meaningful, since local saliency. could be due. to noise or unimportant parts of objects. For
some structured objects, properties that are more functional are required to select locations,
objects, features, and their groupings.
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To overcome this problem, various approaches have been proposed. Walther et al. (2005)
use region growing and adaptive thresholding methods to work on salient points. The model
combines the scale-invariant feature transform (SIFT) algorithm for recognition with the
saliency based model and performs better with attention. Won et al. (2006) use a scale selec-
tion algorithm based on Kadir’s (Kadir and Brady 2001) approach. Therefore, the number of
salient points in an image can be dramatically reduced to the number of salient regions. The
saliency based model proposed by Itti et al is also used for object recognition by combining
an additional recognition system called HMAX (Riesenhuber 2005).

The scanpaths (or sequences of attentional focus) can be used for object recognition (Rybak
et al. 2005). Through the scaning of an image, primary features (e.g. edges) are extracted
and transformed into invariant second order features using a reference frame and are then
stored in ‘what’ memory. The sequence of attentional focus is stored in ‘where’ memory.
The model learns these ‘what’ and ‘where’ pieces of information for a complex scene such
as a face image. When a new image is presented, the model operates ‘search mode’ to scan
the image until an input retinal image similar to one of the stored retinal images is found.
Once a similar retinal image is found, a recognition mode is executed to compare the stored
local contents to the local contents of the new image along the stored scanpath. The model
shows the ability to recognize complex images invariantly with respect to shift, rotation and
scale.

In a different approach, object recognition is considered as a reconstruction problem in
which several attended pieces of an image are required to combine into an object (Fu et al.
2009; Gouet-Brunet and Lameyre 2008). In this approach, a segmentation process is adopted
to break an image into perceptually homogeneous regions. The pieces may correspond to a
part of an object or background noise. The attentional task of this approaches is to select the
pieces and to reconstruct a whole object that maximizes a global attention function.

4.3.2 Search

Saliency in most current models is defined at the feature level, such as feature contrasts.
Saliency is calculated by summing up all contrast values obtained from center-surround
differences on each feature map. In those models, a location of the saliency map does not
correspond to an object or a part of object. This means that the model exhaustively searches
a possible target location in a point-by-point (or pixel-by-pixel) way, even though far fewer
objects are contained in an image scene.

The task ‘search’ is intrinsically knowledge-driven, since we have to know what we want
to find regardless of whether or not a target is salient. A later version of the saliency-based
models proposed by Itti (Navalpakkam and Itti 2005), and the guided search model pro-
posed by Wolfe (1994), used top-down knowledge that provided weighting parameters on
preattentive stages. Similarly, in Hamker’s model, feature values and saliency values are
combined into a population code (Hamker 2006). This coded information is sent further
upwards to V4 and IT cells. A target template is stored in prefrontal memory and is com-
pared to the activation pattern of IT. The feedback from higher stages and lower stages guides
searching behaviors by enhancing task-relevant information and suppressing task-irrelevant
information.

In Lee’s model in which attention is also guided by a cue feature, the location of a target
candidate is represented with respect to the spatial reference frame of a cue feature (Lee et al.
2005). Forinstance, the task “finding a man in red t-shirt’ is intrinsically required to represent
the location of a target candidate relative to the location of a red colored region. Even though
the model does not provide an explicit explanation of how the validity effect is produced,
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facilitatory and interference effects result from the multiplicative interaction between cued
locations and target candidates. That is, a unit corresponding to a target above cued locations
(e.g. a face above a colored t-shirt) is positively gained by multiplicative interaction, while
a unit corresponding to a target candidate at uncued locations (e.g. hands below a colored
t-shirt) can be negatively gained.

Other models also have tackled a search task. One interesting approach is based on a
learning mechanism. According to Balkenius (2000), attention can be controlled in the same
way as actions using similar learning mechanisms. In particular, two learning mechanisms,
habituation and conditioning, may take an important role in attentional control. Habituation,
the ability to adapt to an environment, can be considered as a learning process in which an
animal learns to ignore a stimulus carrying less informative values. In conditioning, an animal
learns a pairing relation between a conditional stimulus and an unconditional stimulus and
produces a response based on the relationship, or an animal learns the relationship between
an action and its results.

5 Summary

This paper reviewed visual attention in psychological, neuroscientific and computational
studies and introduced some of the fundamental issues in these areas. Computational goals
were introduced to explain why visual attention is necessary and leads to selectivity of pro-
cessing. The distinctions between early and late, space-based and object-based, and bottom-
up and top-down processing highlight how selection may work. We introduced underlying
mechanisms of brain areas that are linked to visual attention and correspond to psychological
studies. We described the visual pathways, properties of RF, locus of visual attention, and
attentional networks that are being investigated to uncover the mechanisms of visual attention
at the biological level. Computational models owe a debt to studies in both areas. We intro-
duced a number of computational models for the processing of visual attention. Even though
current models focus on bottom-up spatial attention, there is a significant and experimen-
tal attempt to integrate top-down knowledge and combine spatial mechanisms with object
recognition, and to reconcile early and late selection.

Computational modelers clearly have a purpose when they construct a model. However,
regardless of their purpose, the difficulty they face is how they can achieve their goal. This
review aims to provide guidance on how to construct a computational model of selective
attention. The lessons from psychological and neuroscientific studies can be helpful to guide
which kinds of properties are required in the model and what constraints should be imposed
on the performance of a model. These constraints may work on different levels, such as model
architecture, feature extraction, selection, learning, and attentional modulation algorithms.
Conversely, computational models can contribute to extend our understanding of selective
attention by implementing and testing ideas from psychological and biological studies. Inter-
weaving all the efforts together, a piece of the puzzle can be placed in a more appropriate
location.

References

Avraham T, Lindenbaum M (2010) Esaliency (extended saliency): meaningful attention using stochastic image
modeling. IEEE Trans Pattern Anal Mach Intell 32(4):693-708

Bar MA (2003) Cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn
Neurosci 15:600-609

@ Springer



A critical review of selective attention 47

Balkenius C (2000) Attention, habituation and conditioning: toward a computational model. Cogn Sci Q
1(2):171-214

Baylis GC, Driver J (1992) Visual parsing and response competition: the effect of grouping factors. Percept
Psychophys 51:145-162

Beck DM, Kastner S (2008) Top-down and bottom-up mechanisms in biasing competition in the human brain.
Vis Res 49(10):1154-1165

Beck DM, Lavie N (2005) Look here but ignore what you see: effects of distractors at fixation. J Exp Psychol
Hum Percept Perform 31:592-607

Boehler CN, Schoenfeld MA, Heinze HJ, Hopf JM (2010) Object-based selection of irrelevant features is not
confined to the attended object. J Cogn Neurosci. doi:10.1162

Borji A, Ahmadabadi MN, Araabi BN, Hamidi M (2010) Online learning of task-driven object-based visual
attention control. Image Vis Comput 28(7):1130-1145

Broadbent DE (1958) Perception and communication. Pergamon, London

Buschman RJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior
parietal cortices. Sci 315:1860-1862

Chikkerur S, Serre T, Tan C, Poggio T (2010) What and where: a Bayesian inference theory of attention. Vis
Res 50(22):2233-2247

Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1990) Attentional modulation of neural
processing of shape, color, and velocity in humans. Science 248:1556-1559

Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22:319-349

Corbetta M, Shulman GL (2002) Control of goal-direct and stimulus-driven attention in the brain. Nat Neurosci
Rev 3:201-215

Deco G, Schurmann B (2000) A hierarchical neural system with attentional top-down enhancement of the
spatial resolution for object recognition. Vis Res 40(20):2845-2859

Deco G, Rolls ET (2005) Neurodynamics of biased competition and cooperation for attention: a model with
spiking neurons. J Neurophysiol 94(1):295-313

Desimone R, Duncan J (1995) Neural mechanism of selective attention. Annu Rev Neurosci 18:193-222

de-Wit LH, Kentridge RW, Milner AD (2008) Object-based attention and visual area LO. Neuropsychologia
47:1483-1490

DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci
11:219-226

DeYoe EA, Felleman DJ, Van Essen DC, McClendon E (1994) Processing streams in visual area v4 and
inferotemporal cortex of the macaque monkey. Nature 37:1151-1154

Duncan J (1984) Selective attention and the organization of visual information. J Exp Psychol Gen 113:
501-517

Duncan J, Humphreys GW, Ward R (1997) Competitive brain activity in visual attention. Curr Opin Neurobiol
7:255-261

Eckstein MP, Shimozaki SS, Abbey CK (2002) The footprints of visual attention in the Posner cueing para-
digm revealed by classification images. J Vis 2:25-45

Egeth HE, Yantis S (1997) Visual attention: control, representation, and time course. Annu Rev Psychol
48:269-297

Egly R, Driver J, Rafal RD (1994) Shifting visual attention between objects and locations: evidence from
normal and parietal lesion subjects. J Exp Psychol Gen 123:161-177

Elazary L, Itti L (2008) Interesting objects are visually salient. J Vis 8(3):1-15

Ellis A.W., Young A.W. (1996) Human cognitive neuropsychology: a textbook with readings. Psychology
Press, Hove

Eriksen CW, James JD (1986) Visual attention within and around the field of local attention: a zoom lens
model. Percept Psychophys 40(4):225-240

Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn
Sci 10(8):382-390

Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual atten-
tion: shared and specific neural mechanism. Brain 120:2013-2028

Fu H, Chi Z, Feng D (2009) An efficient algorithm for attention-driven image interpretation from segments.
Pattern Recogn 42(1):126-140

Gao D, Mahadevan V, Vasconcelos N (2008) On the plausibility of the discriminant center-surround hypoth-
esis for visual saliency. J Vis 8(7):1-18

Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex.
Nature 391:481-484

Gouet-Brunet V, Lameyre B (2008) Object recognition and segmentation in videos by connecting heteroge-
neous visual features. Comput Vis Image Understand 111(1):86-109

@ Springer


http://dx.doi.org/10.1162

48 K. Lee, H. Choo

Grossberg S (2005) Linking attention to learning, expectation, competition, and consciousness. In: Itti L,
Rees G, Tsotsos J (eds) Neurobiology of attention. Academic Press, Elsevier pp 652-662

Hamker FH (2006) Modeling feature-based attention as an active top-down inference process. BioSystems
86:91-99

Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control.
Nat Neurosci 3:284-291

Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. Minneapolis, MN, pp 1-8

HuY, Rajan D, Chia L-T (2008) Detection of visual attention regions in images using robust subspace analysis.
J Vis Commun Image Represent 19(3):199-216

Humphreys GW, Riddoch MJ (1995) Separate coding of space within and between perceptual objects: evi-
dence from unilateral visual neglect. Cogn Neuropsychol 12(3):283-311

Indiveri G (2008) Neuromorphic VLSI models of selective attention: from single chip vision sensors to multi-
chip systems. Sensors 8(9):5352-5375

Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE
Trans Pattern Anal Mach Intell 20(11):1254-1259

Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis
Res 40:1489-1506

Itti L, Koch C (2001) Computational modeling of visual attention. Nat Neurosci Rev 21:314-329

Itti L, Baldi P (2006) Bayesian surprise attracts human attention. In:  Weiss Y, Scholkopf B, Platt J (eds)
Advances in neural information processing systems, vol 18. MIT press, MA pp 1-8

Julesz B (1991) Early vision and focal attention. Rev Mod Phys 63:735-772

Kadir T, Brady M (2001) Scale, saliency and image description. Int J Comput Vis 30(2):77-116

Kanwisher N, Wojciulik E (2000) Visual attention: insights from brain imaging. Nat Neurosci Rev 1:91-100

Kanwisher N (2003) The ventral visual object pathway in humans: evidence from fMRI. In: Chalupa L,
Werner J (eds) The visual neurosciences. MIT Press, Cambridge, MA pp 1179-1189

Kastner S, Ungerleider LG (2000) Mechanism of visual attention in the human cortex. Annu Rev Neurosci
23:315-341

Kastner S, DeWeerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in ventral
extrastriate cortex as revealed by functional MRI. Science 282:108-111

Kim BK, Lee S-Y (2004) Sequential recognition of superimposed patterns with top-down selective attention.
Neurocomputing 58(60):633-640

Kimchi R, Razpurker-Apfeld I (2004) Perceptual grouping and attention: not all groupings are equal. Psychon
Bull Rev 11(4):687-696

Koch C, Tsuchiya N (2007) Attention and consciousness: two distinct brain processes. Trends Cogn Sci
11:16-22

Lamme VAF (1995) The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci
15:1605-1615

Lavie N (1995) Perceptual load as a necessary condition for selective attention. Exp Psychol Hum Percept
Perform 21:451-468

Lavie N. (1995) Perceptual load as a necessary condition for selective attention. J Exp Psychol Hum Percept
Perform 21:451-468

Lavie N (2005) Distracted and confused?: selective attention under load. Trends Cogn Sci 9:75-82

Lavie N, Driver J (1996) On the spatial extent of attention in object based visual selection. Percept Psychophys
58(8):1238-1251

Lee KW (2008) Guiding attention by cooperative cues. J Comput Sci Technol 23(5):874-884

Lee KW, Feng J, Buxton H (2005) Cued search: a computational model of selective attention. IEEE Trans
Neural Netw 16(4):910-924

Lee S, Kim K, Kim J-J, Kim M, Yoo H-J (2010) Familiarity based unified visual attention model for fast and
robust object recognition. Pattern Recogn 43:1116-1128

Levine MW, Shefner JM (1991) Fundamentals of sensation and perception. Brooks/Cole, CA

Ling S, Liu T, Carrasco M (2009) How spatial and feature-based attention affect the gain and tuning of
population responses. Vis Res 49:1194-1204

Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in
areas v1, v2, and v4 of macaque visual cortex. J Neurophysiol 77:24—42

Luck SJ, Ford MA (1998) On the role of selective attention in visual perception. Proc Natil Acad Sci USA
95:825-830

Mahadevan V, Vasconcelos N (2010) Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal
Mach Intell 32(1):171-177

Marr D (1982) Vision. W. H. Freeman and Company, San Francisco

@ Springer



A critical review of selective attention 49

Maunsell JHR, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29:317-322

Mendi E, Milanova M (2010) Contour-based image segmentation using selective visual attention. J Softw Eng
Appl 3:796-802

Miau F, Papageorgiou C, Itti L (2001) Neuromorphic algorithms for computer vision and attention. In: Pro-
ceedings of the SPIE 46 annual international symposium on optical science and technology, vol 4479,
pp 12-23

Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends
Neurosci 6:414-417

Mitchell J, Stoner G, Reynolds J (2004) Object-based attention determines dominance in binocular rivalry.
Nature 429:410-413

Moore CM, Yantis S, Vauchan B (1988) Object-based visual selection: evidence from perceptual completion.
Psychol Sci 9:104-110

Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science
229:782-784

Mozer MC, Sitton M (1998) Computational modeling of spatial attention. In: Pashler H (ed) Attention. Psy-
chology Press, London pp 341-393

Muller NG, Bartelt OA, Donner TH, Villringer A, Brandt SA (2003) A physiological correlate of the “Zoom
Lens” of visual attention. J Neurosci 23:3561-3565

Muller NG, Kleinschmidt A (2003) Dynamic interaction of object- and space-based attention in retinotopic
visual areas. J Neurosci 23:9812-9816

Navalpakkam V, Itti L (2005) Modeling the influence of task on attention. Vis Res 45(2):205-231

Navalpakkam V, Itti L (2006) An integrated model of top-down and bottom-up attention for optimal object
detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. New York,
NY, pp 2049-2056

Norman DA (1968) Towards a theory of memory and attention. Psychol Rev 75:522-536

Nothdurft HC (2006) Salience and target selection in visual search. Vis Cogn 14(4-8):514-542

O’Craven K, Kansisher N, Downing P (1999) fMRI evidence for objects as the units of attentional selection.
Nature 401:584-587

Oliva A, Torralba A (2007) The role of context in object recognition. Trends Cogn Sci 11(12):520-527

Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of visual attention and invariant
pattern recognition based on dynamic routing of information. J Neurosci 13(11):4700-4719

Orabona F, Metta G, Sandini G (2007) A Proto-object based visual attention model. In: Paletta L, Rome E
(eds) Lecture notes in artificial intelligence, vol 4840. Berlin, Heidelberg, pp 198-215

Palmer SE (1998) The psychology of perceptual organization: a transformational approach. In: Beck J, Hope
B, Rosenfeld A (eds) Human and machine vision. Academic, Orlando pp 269-339

Polk TA, Drake RM, Jonides JJ, Smith MR, Smith EE (2008) Attention enhances the neural processing of
relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic
resonance imaging study of the Stroop task. J Neurosci 28:13786-13792

Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol Gen
109:160-174

Posner MI, Nissen MJ, Ogden WC (1977) Attended and unattended processing modes: the role of set for spa-
tial location. In: Pick HL, Saltzman 1J (eds) Modes of perceiving and processing information. Erlbaum,
Hillsdale pp 160-174

Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3-25

Qiu FT, von der Heydt R (2007) Neural representation of transparent overlay. Nat Neurosci 10:283-284

Reynolds JH, Desimone R (2003) Interacting roles of attention and visual salience in V4. Neuron 37:
853-863

Riesenhuber M (2005) Object recognition in cortex: neural mechanisms and possible roles for attention. In:
Itti L, Rees G, Tsotsos J (eds) Neurobiology of Attention. Academic Press, Elsevier pp 279-287

Roelfserna Lamme PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex
of the macaque monkey. Nature 395:376-381

Roggeman C, Fias W, Verguts T (2010) Salience maps in parietal cortex: imaging and computational model-
ing. Neuroimage 52(3):1005-1014

Rybak IA, Gusakova VI, Golovan AV, Podladchikova LN, Shevtsova NAA (2005) Attention-guided recog-
nition based on what and where representations: a behavioral model. In: Itti L, Rees G, Tsotsos J (eds)
Neurobiology of Attention. Academic Press, Elsevier pp 2387-2400

Schoenfeld MA, Tempelmann C, Martinez A, Hopf JM, Sattler C, Heinze HJ, Hillyard SA (2003) Dynamics
of feature binding during object-selective attention. Proc Natl Acad Sci 100:11806-11811

Serences JT, Schwarzbach J, Courtney SM, Golay X, Yantis S (2004) Control of object-based attention in
human cortex. Cereb Cortex 14:1346-1357

@ Springer



50 K. Lee, H. Choo

Shimozaki SS, Eckstein MP, Abbey CK (2003) Comparison of two weighted integration models for the cueing
task: Linear and likelihood. J Vis 3(3):209-229

Shomstein S, Yantis S (2004) Configural and contextual prioritization in object-based attention. Psychon Bull
Rev 11:247-253

Sterzer P, Kleinschmidt A, Rees G (2009) The neural bases of multistable perception. Trends Cogn Sci
13(7):310-318

Sun Y, Fisher R (2003) Object-based visual attention for computer vision. Artif Intell 146(1):77-123

Sun Y, Fisher R, Wang F, Gomes HM (2008) A computer vision model for visual object based attention and
eye movements. Comput Vis Image Understand 112(2):126-142

Torralbo A, Beck DM (2008) Perceptual load-induced selection as a result of local competitive interactions
in visual cortex. Psychol Sci 19(10):1045-1050

Torralba A, Oliva A, Castelhano M, Henderson JM (2006) Contextual guidance of attention in natural scenes:
the role of global features on object search. Psychol Rev 113(4):766-786

Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12:97-136

Treisman A, Schmidt H (1982) Illusory conjunctions in perception of objects. Cogn Psychol 14:107-141

Treisman A (1960) Contextual cues in selective listening. Q J Exp Psychol 12:242-248

Turatto M, Mazza V, Umilta C (2005) Crossmodal object-based attention: auditory objects affect visual pro-
cessing. Cognition 96:B55-B64

Vanrullen R (2003) Visual saliency and spike timing in the ventral visual pathway. J Physiol (Paris) 97(2):
365-377

Walther D, Rutishauser U, Koch C, Perona P (2005) Selective visual attention enables learning and recognition
of multiple objects in cluttered scenes. Comput Vis Image Understand 100:41-63

Wegener D, Ehn F, Aurich MK, Galashan FO, Kreiter AK (2008) Feature-based attention and the suppression
of non-relevant object features. Vis Res 48:2696-2707

Wojciulik E, Kanwisher N (1999) The generality of parietal involvement in visual attention. Neuron 23:
747-764

Wolfe IM (1994) Guided search 2.0: a revised model of visual search. Psychon Bull Rev 1:202-238

Won W-J, Ban S-W, Moon J (2006) Biologically motivated face selective attention system. In: Proceedings
of the international joint conference on neural networks, Vancouver, Canada, pp 4292-4297

Wauhr P, Frings C (2008) A case for inhibition: visual attention suppresses the processing of irrelevant objects.
J Exp Psychol Gen 137:116-130

Zhaoping L (2008) Attention capture by eye of origin singletons even without awareness—a hallmark of a
bottom-up saliency map in the primary visual cortex. J Vis 8(1):1-18




Copyright of Artificial Intelligence Review isthe property of Springer Science & Business MediaB.V. and its
content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for individual use.

www.manharaa.com




